资源类型

期刊论文 193

会议视频 2

年份

2023 24

2022 19

2021 17

2020 9

2019 14

2018 10

2017 11

2016 11

2015 4

2014 4

2013 4

2012 2

2011 6

2010 8

2009 8

2008 11

2007 9

2006 2

2005 6

2004 6

展开 ︾

关键词

三峡工程 2

仿真优化 2

自主品牌 2

自主开发 2

&ldquo 1

12相整流 1

3D打印 1

ANFIS 1

ARM 1

CAE 1

CAN总线 1

CPR1000 1

Cu(In 1

Ga)Se2光伏组件 1

IC产业 1

IEEE80216 1

Mesh 1

SAC 1

UniDrop 1

展开 ︾

检索范围:

排序: 展示方式:

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault

Zhi-Peng CHEN; Songye ZHU

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 962-975 doi: 10.1007/s11709-022-0873-6

摘要: In this paper, the seismic responses and resilience of a novel K-type superelastic shape memory alloy (SMA) self-centring (SC) eccentrically braced frame (EBF) are investigated. The simulation models of the SMA-based SC-EBF and a corresponding equal-stiffness traditional EBF counterpart are first established based on some existing tests. Then twenty-four near-fault ground motions are used to examine the seismic responses of both EBFs under design basis earthquake (DBE) and maximum considered earthquake (MCE) levels. Structural fragility and loss analyses are subsequently conducted through incremental dynamic analyses (IDA), and the resilience of the two EBFs are eventually estimated. The resilience assessment basically follows the framework proposed by Federal Emergency and Management Agency (FEMA) with the additional consideration of the maximum residual inter-storey drift ratio (MRIDR). The novel SMA-based SC-EBF shows a much better resilience in the study and represents a promising attractive alternative for future applications.

关键词: shape memory alloy     eccentrically braced frame     self-centring     fragility     loss function     resilience    

Self-centring segmental retaining walls—A new construction system for retaining walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 980-1000 doi: 10.1007/s11709-021-0737-5

摘要: This paper reports on an experimental study on a new self-centring retaining wall system. Four post-tensioned segmental retaining walls (PSRWs) were experimentally tested. Each of the walls was constructed using seven T-shaped concrete segments with a dry stack. The walls were tested under incrementally increasing cyclic lateral load. The effect of the wall height, levels of post-tensioning (PT) force, and bonded versus unbonded condition of PT reinforcement on the structural behavior of the PSRWs was investigated. The results showed that such PSRWs are structurally adequate for water retaining structures. According to the results, increasing the wall height decreases initial strength but increases the deformation capacity of the wall. The larger deformation capacity and ductility of PSRW make it a suitable structural system for fluctuating loads or deformation, e.g., seawall. It was also found that increasing the PT force increases the wall’s stiffness; however, reduces its ductility. The residual drift and the extent of damage of the unbonded PSRWs were significantly smaller than those of the bonded ones. Results suggest that this newly developed self-centring retaining wall can be a suitable structural system to retain lateral loads. Due to its unique deformation capacity and self-centring behavior, it can potentially be used for seawall application.

关键词: retaining wall     segmental     precast concrete     unbonded post-tensioning     water retaining wall     seawall    

Exploring self-organization and self-adaption for smart manufacturing complex networks

《工程管理前沿(英文)》 2023年 第10卷 第2期   页码 206-222 doi: 10.1007/s42524-022-0225-1

摘要: Trends toward the globalization of the manufacturing industry and the increasing demands for small-batch, short-cycle, and highly customized products result in complexities and fluctuations in both external and internal manufacturing environments, which poses great challenges to manufacturing enterprises. Fortunately, recent advances in the Industrial Internet of Things (IIoT) and the widespread use of embedded processors and sensors in factories enable collecting real-time manufacturing status data and building cyber–physical systems for smart, flexible, and resilient manufacturing systems. In this context, this paper investigates the mechanisms and methodology of self-organization and self-adaption to tackle exceptions and disturbances in discrete manufacturing processes. Specifically, a general model of smart manufacturing complex networks is constructed using scale-free networks to interconnect heterogeneous manufacturing resources represented by network vertices at multiple levels. Moreover, the capabilities of physical manufacturing resources are encapsulated into virtual manufacturing services using cloud technology, which can be added to or removed from the networks in a plug-and-play manner. Materials, information, and financial assets are passed through interactive links across the networks. Subsequently, analytical target cascading is used to formulate the processes of self-organizing optimal configuration and self-adaptive collaborative control for multilevel key manufacturing resources while particle swarm optimization is used to solve local problems on network vertices. Consequently, an industrial case based on a Chinese engine factory demonstrates the feasibility and efficiency of the proposed model and method in handling typical exceptions. The simulation results show that the proposed mechanism and method outperform the event-triggered rescheduling method, reducing manufacturing cost, manufacturing time, waiting time, and energy consumption, with reasonable computational time. This work potentially enables managers and practitioners to implement active perception, active response, self-organization, and self-adaption solutions in discrete manufacturing enterprises.

关键词: cyber–physical systems     Industrial Internet of Things     smart manufacturing complex networks     self-organization and self-adaption     analytical target cascading     collaborative optimization    

Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review

《能源前沿(英文)》   页码 727-750 doi: 10.1007/s11708-023-0896-2

摘要: A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.

关键词: triboelectric nanogenerator (TENG)     self-healable nanomaterials     self-powered devices     energy    

Modular structure of a self-reconfigurable robot

FEI Yanqiong, DONG Qinglei, ZHAO Xifang

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 116-119 doi: 10.1007/s11465-007-0020-z

摘要: This paper proposes a novel, hermaphroditic, and lattice self-reconfigurable modular robot. Each module is composed of a center body a cubic part and six sides that can rotate independently. There are two holes and two extensible pegs on each side. The rotary motion of each side and the extensible motion of the pegs are generated by a motor connected to a reducer, using a cone-shaped gear, belt, clutch, etc. The structure of the module is compact, and has space to extend further.

关键词: compact     self-reconfigurable modular     hermaphroditic     cone-shaped     clutch    

Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator

Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 176-183 doi: 10.1007/s11465-010-0001-5

摘要: The structure and principle of a new type of a diphase opposition giant magnetostrictive self-sensing actuator is introduced. A bridge analysis model based on variable inductance is established. Dynamic balance separation technology for the giant magnetostrictive self-sensing actuator comes true by the least means square (LMS) self-adapting algorithm. The scheme design of one important part of the circuit with the real-time separation circuit of the dynamic balance signal based on a digital signal processor is obtained. The part of the signal separated circuit is designed, which includes logarithmic-antilog practical multiplication circuit, amplifying circuit, filter circuits, and amplifier circuit. Based on the embedded system simulation software—PROTUES, the simulation effect of the circuit that separates the sensing signal from the mixed signals is obvious, which indicates that the circuit can rapidly and stably work. Moreover, the structure is simple, reliable, and meets the practical requirement.

关键词: giant magnetostrictive material (GMM) self-sensing actuator     least means square (LMS) self-adapting algorithm     design of self-adaptive circuit    

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 419-428 doi: 10.1007/s11709-013-0224-8

摘要: With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal by replacement of waste glass with concrete composition materials. Due to differences in mixture design, placement and consolidation techniques, the strength and durability of Self Compacting Concrete (SCC) may be different than those of conventional concrete. Therefore, replacement of waste glass with fine aggregate in SCC should deeply be investigated compared to conventional concretes. The aim of the present study is to investigate the effect of glass replacement with fine aggregate on the SCC properties. In present study, fine aggregate has been replaced with waste glass in six different weight ratios ranging from 0% to 50%. Fresh results indicate that the flow-ability characteristics have been increased as the waste glass incorporated to paste volume. Nevertheless, compressive, flexural and splitting strengths of concrete containing waste glass have been shown to decrease when the content of waste glass is increased. The strength reduction of concrete in different glass replacement ratios is not remarkable, thus it can be produced SCC with waste glass as fine aggregate in a standard manner.

关键词: Self Compacting Concrete (SCC)     recycle glass     fine aggregate     fresh and hardened properties    

Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete

Kunamineni VIJAY, Meena MURMU

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 515-525 doi: 10.1007/s11709-018-0494-2

摘要: This paper presents the effect on compressive strength and self-healing capability of bacterial concrete with the addition of calcium lactate. Compared to normal concrete, bacterial concrete possesses higher durability and engineering concrete properties. The production of calcium carbonate in bacterial concrete is limited to the calcium content in cement. Hence calcium lactate is externally added to be an additional source of calcium in the concrete. The influence of this addition on compressive strength, self-healing capability of cracks is highlighted in this study. The bacterium used in the study is and was added to both spore powder form and culture form to the concrete. spore powder of 2 million cfu/g concentration with 0.5% cement was mixed to concrete. Calcium lactates with concentrations of 0.5%, 1.0%, 1.5%, 2.0%, and 2.5% of cement, was added to the concrete mixes to test the effect on properties of concrete. In other samples, cultured with a concentration of 1×10 cells/mL was mixed with concrete, to study the effect of bacteria in the cultured form on the properties of concrete. Cubes of 100 mm×100 mm×100 mm were used for the study. These cubes were tested after a curing period of 7, 14 and 28 d. A maximum of 12% increase in compressive strength was observed with the addition of 0.5% of calcium lactate in concrete. Scanning electron microscope and energy dispersive X-ray spectroscopy examination showed the formation of ettringite in pores; calcium silicate hydrates and calcite which made the concrete denser. A statistical technique was applied to analyze the experimental data of the compressive strengths of cementations materials. Response surface methodology was adopted for optimizing the experimental data. The regression equation was yielded by the application of response surface methodology relating response variables to input parameters. This method aids in predicting the experimental results accurately with an acceptable range of error. Findings of this investigation indicated the influence of added calcium lactate in bio-concrete which is quite impressive for improving the compressive strength and self-healing properties of concrete.

关键词: calcium lactate     bacillus subtilis     compressive strength     self-healing of cracks    

Computational fluid dynamic analysis of flutter characteristics for self-anchored suspension bridges

ZHU Zhiwen, WANG Zhaoxiang, CHEN Zhengqing

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 267-273 doi: 10.1007/s11709-008-0034-6

摘要: This paper outlines the essentials and procedures of computational fluid dynamics (CFD) simulation applicable to evaluating flutter derivatives of bridge decks. An arbitrary Lagrangian-Eulerian (ALE) description of the flow around the moving rigid box girder combined with the finite volume discretization and multi-grid algorithm is presented. The proposed methods are employed to identify flutter derivatives of the bridge deck of the Sanchaji Self-anchored Suspension Bridge. The results agree well with ones from wind tunnel tests. It demonstrates accuracy and efficiency of the present method.

关键词: discretization     computational     description     Self-anchored Suspension     simulation applicable    

Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate

Yawen Yao, Sabine Rosenfeldt, Kai Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 389-396 doi: 10.1007/s11705-019-1911-3

摘要: Herein, phloroglucinol tristearate (PhgTS) was used to study the crystallization process due to its unique symmetric structure containing a benzene ring and three aliphatic chains. Spherulites of crystallized PhgTS from four solvents under diverse conditions were analyzed in detail and their formation process was studied. Maltese cross is shown by PhgTS spherulites obtained from aprotic solvents via polarized optical microscopy. In comparison, no Maltese cross can be observed from branch-like crystals formed from protic solvents. Independent on the microscaled morphology, lamellae were found to be the basic blocks constructing both PhgTS spherulites and branch-like crystals, which were formed predominantly by stacked PhgTS molecules. Although differential characters of the solvents did not affect the formation of lamellas, the solvents played a crucial role in the formation of self-assembled microscaled morphologies. In particular, the morphologies of spherulites were strongly affected by the concentration of PhgTS solutions, surrounding temperature and evaporation rate of solvents. Generally, a higher concentration of PhgTS led to more homogeneous spherulites, a lower evaporation rate resulted in more compact spherulites, and a higher surrounding temperature generated preferentially more ring-banded spherulites of PhgTS.

关键词: phloroglucinol     tristearate     aprotic and protic solvent     self-assembly     spherulites    

Estimating moment capacity of ferrocement members using self-evolving network

Abdussamad ISMAIL

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 926-936 doi: 10.1007/s11709-019-0527-5

摘要: In this paper, an empirical model based on self-evolving neural network is proposed for predicting the flexural behavior of ferrocement elements. The model is meant to serve as a simple but reliable tool for estimating the moment capacity of ferrocement members. The proposed model is trained and validated using experimental data obtained from the literature. The data consists of information regarding flexural tests on ferrocement specimens which include moment capacity and cross-sectional dimensions of specimens, concrete cube compressive strength, tensile strength and volume fraction of wire mesh. Comparisons of predictions of the proposed models with experimental data indicated that the models are capable of accurately estimating the moment capacity of ferrocement members. The proposed models also make better predictions compared to methods such as the plastic analysis method and the mechanism approach. Further comparisons with other data mining techniques including the back-propagation network, the adaptive spline, and the Kriging regression models indicated that the proposed models are superior in terms prediction accuracy despite being much simpler models. The performance of the proposed models was also found to be comparable to the GEP-based surrogate model.

关键词: ferrocement     moment capacity     self-evolving neural network    

Investigations concerning seismic response control of self-anchored suspension bridge with MR dampers

YANG Menggang, HU Jianhua

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 43-48 doi: 10.1007/s11709-008-0011-0

摘要: To mitigate the seismic response of self-anchored suspension bridges, equations of motion governing the coupled system of bridge- magneto-rheological (MR) dampers subject to seismic excitation are formulated by employing the phenomenological model of MR dampers. A corresponding computer program is developed and employed for studying the seismic response control of a self-anchored suspension bridge with a main span of 350 m. The effect of variable current and number of dampers on seismic response control is investigated. The numerical results indicate the longitudinal displacement of the tower top and bridge girder decrease with the increase in input current and number of MR dampers attached longitudinally at the tower-girder connections, and the internal forces of the tower are effectively attenuated as well. It appears that small electronic current (0.5 A in this study) may sufficiently attenuate the seismic responses for practical engineering applications.

关键词: longitudinal displacement     corresponding computer     excitation     phenomenological     self-anchored suspension    

Multiple input self-organizing-map ResNet model for optimization of petroleum refinery conversion units

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 759-771 doi: 10.1007/s11705-022-2269-5

摘要: This work introduces a deep-learning network, i.e., multi-input self-organizing-map ResNet (MISR), for modeling refining units comprised of two reactors and a separation train. The model is comprised of self-organizing-map and the neural network parts. The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part. In the neural network part, residual blocks enhance the convergence and accuracy, ensuring that the structure will not be overfitted easily. Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products. The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model, thus leading to more accurate optimization of the hydrocracker operation. Moreover, the MISR model has smoother error convergence than the previous model. Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms. Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants.

关键词: hydrocracking     convolutional neural networks     self-organizing map     deep learning     data-driven optimization    

Unknown fault detection for EGT multi-temperature signals based on self-supervised feature learning and

《能源前沿(英文)》 2023年 第17卷 第4期   页码 527-544 doi: 10.1007/s11708-023-0880-x

摘要: Intelligent power systems can improve operational efficiency by installing a large number of sensors. Data-based methods of supervised learning have gained popularity because of available Big Data and computing resources. However, the common paradigm of the loss function in supervised learning requires large amounts of labeled data and cannot process unlabeled data. The scarcity of fault data and a large amount of normal data in practical use pose great challenges to fault detection algorithms. Moreover, sensor data faults in power systems are dynamically changing and pose another challenge. Therefore, a fault detection method based on self-supervised feature learning was proposed to address the above two challenges. First, self-supervised learning was employed to extract features under various working conditions only using large amounts of normal data. The self-supervised representation learning uses a sequence-based Triplet Loss. The extracted features of large amounts of normal data are then fed into a unary classifier. The proposed method is validated on exhaust gas temperatures (EGTs) of a real-world 9F gas turbine with sudden, progressive, and hybrid faults. A comprehensive comparison study was also conducted with various feature extractors and unary classifiers. The results show that the proposed method can achieve a relatively high recall for all kinds of typical faults. The model can detect progressive faults very quickly and achieve improved results for comparison without feature extractors in terms of F1 score.

关键词: fault detection     unary classification     self-supervised representation learning     multivariate nonlinear time series    

标题 作者 时间 类型 操作

Behaviour of self-centring shear walls——A state of the art review

期刊论文

Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault

Zhi-Peng CHEN; Songye ZHU

期刊论文

Self-centring segmental retaining walls—A new construction system for retaining walls

期刊论文

Exploring self-organization and self-adaption for smart manufacturing complex networks

期刊论文

Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review

期刊论文

Modular structure of a self-reconfigurable robot

FEI Yanqiong, DONG Qinglei, ZHAO Xifang

期刊论文

Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator

Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG,

期刊论文

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

期刊论文

Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete

Kunamineni VIJAY, Meena MURMU

期刊论文

Computational fluid dynamic analysis of flutter characteristics for self-anchored suspension bridges

ZHU Zhiwen, WANG Zhaoxiang, CHEN Zhengqing

期刊论文

Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate

Yawen Yao, Sabine Rosenfeldt, Kai Zhang

期刊论文

Estimating moment capacity of ferrocement members using self-evolving network

Abdussamad ISMAIL

期刊论文

Investigations concerning seismic response control of self-anchored suspension bridge with MR dampers

YANG Menggang, HU Jianhua

期刊论文

Multiple input self-organizing-map ResNet model for optimization of petroleum refinery conversion units

期刊论文

Unknown fault detection for EGT multi-temperature signals based on self-supervised feature learning and

期刊论文